Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC	NFMC519	Advanced Iron-Making Technologies	3	1	0	4

Course Objective

• The main objective of the course is to introduce the students with recent technologies in the field of iron-making

Learning Outcomes

• On completion of the course, students will be able to understand the fundamentals of iron-making with recent technological developments.

Unit	Topics to be covered	Lecture Hours	Tutorial Hours	Learning Outcome
1	Introduction: Early history of iron making (world & India), Evolution of iron making technologies, Alternative methods of iron making.	4	0	Knowledge about the history of the subject
2	Science base fundamentals of iron making: Metallurgical thermodynamics - Chemical equilibrium, activity and equilibrium constant, Standard Gibbs free energy for oxides, activity composition relationships, chemical potential and equilibrium.	5	3	Knowledge about the fundamentals is involved in the making process.
3	Modern blast furnace: Furnace details- stack, bosh, tuyers, combustion zone, and hearth. Raw materials storage and handling, Materials of iron and metallurgical coke. Burden Preparation- Agglomeration of iron ores (Pelletizing, Sintering, Briquetting, and Nodulizing).	8	2	Knowledge of blast furnaces and raw materials of iron making.
4	Thermal and Chemical features of blast furnace: Mass and Heat balance, raft calculation, Concept of ideal blast furnace, Thermal reserve zone, chemical reserve zone, The RIST diagram.	5	4	Knowledge of heat and mass balance of blast furnace process.
5	Alternative iron-making: the need for alternative iron units, scrap availability, and demand, fundamental of Direct reduction.	3	0	Knowledge of alternative iron- making routes.
6	Direct Reduction Processes: broad classification of DR Processes, details of individual DR Processes- SL/RN, FASTMET, COMET, IT MK3, CIRCOFER, FINMET, FIOR, CIRCORED, MIDREX and HYL etc.	7	2	Knowledge of Solid-state direct reduction processes.
7	Smelting Reduction Processes: Mini-blast furnaces, COREX, FINEX, FASTMELT, HISMELT, TECHNORED, ROMELT AND PLASMAMELT etc.	6	2	Knowledge of smelting reduction processes.
8	Process with potentials: Hydrogen Plasma Smelting Reduction (HPSR), Molten oxide Electrolysis (MOE), Alkaline Iron Electrolysis (AIE). Challenges of hydrogen reduction technologies.	4	1	Knowledge of upcoming technologies in the field of iron making.
	Total	42	14	

Text Books:

- 1. Sponge iron production by direct reduction of iron oxide, Amit Chatterjee, PHI learning private limited, New Delhi, India.
- 2. Hot Metal Production by Smelting Reduction of Iron Oxide, Amit Chatterjee, PHI learning private limited, New Delhi, India.
- 3. Hydrogen assisted direct reduction of iron oxides, Pasquale Cavaliere, Springer.

Reference Books:

- 1. An introduction to modern iron making: RH Tupkary, Khanna Publishers, India
- 2. A first course in iron and steel making: Dipak Majumdar, University Press-IIM Series, India
- 3. Iron making and Steelmaking Theory and practice: A Ghosh, PHI, India